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Abstract

This project explores deep learning methods for bi-
nary classification of skin lesions, melanoma versus be-
nign, using the ISIC 2018 dataset. We implement and
compare three models: a fine-tuned ResNet-18 baseline
and two wvision transformer-based models (DINO and
CLIP), both fine-tuned from self-supervised pretrained
checkpoints. Evaluation metrics include accuracy and
ROC-AUC, with DINO achieving the strongest re-
call and average precision, and CLIP also performing
well in terms of ROC-AUC and confidence calibration.
Future directions include leveraging larger pretrained
models and semi-supervised learning to improve accu-
racy in low-data medical imaging settings.

1. Introduction

Skin cancer is among the most prevalent forms of
cancer worldwide, with melanoma being one of its
deadliest variants. Early and accurate diagnosis is es-
sential for effective treatment and improved patient
outcomes. However, dermatological diagnosis can be
subjective and often requires expert-level interpreta-
tion of dermoscopic images. This has motivated the
development of automated tools that can assist clini-
cians in identifying malignant lesions with high accu-
racy.

In this project, we tackle the binary classification
task of distinguishing melanoma from benign skin le-
sions using dermoscopic images from the ISIC 2018
dataset. The original dataset contains seven diagnos-
tic categories, but we reframe the problem as a binary
classification between melanoma (malignant) and all
other categories (non-melanoma/benign). This sim-
plification is both clinically relevant—melanoma being
the most urgent to detect—and supported by a larger
amount of training data in this binary setting.

The input to our models is a single dermoscopic im-
age, resized to a fixed resolution. We explore three

architectures: a convolutional neural network (ResNet-
18), a self-supervised vision transformer (DINO), and
a vision-language model (CLIP ViT-B/32). We fine-
tune all models on our binary classification task and
evaluate their performance using accuracy and ROC-
AUC metrics. The output of each model is a binary
prediction indicating whether the lesion is malignant
or benign.

Our motivation lies in understanding how recent ad-
vances in representation learning, particularly those in-
volving transformers and multimodal pretraining, per-
form on limited-data, high-stakes medical tasks. By
comparing these models on both quantitative and qual-
itative grounds, we aim to surface insights about their
generalization behavior and decision-making trans-
parency.

The dataset we use comes from the International
Skin Imaging Collaboration (ISIC), which hosts large-
scale public benchmarks to advance automated diag-
nosis of skin disease. The ISIC 2018 challenge in par-
ticular provided high-quality dermoscopic images along
with expert-verified labels, enabling researchers to de-
velop and compare machine learning algorithms for
skin lesion classification, segmentation, and detection.
Its consistent preprocessing and rich annotation make
it a widely adopted dataset in medical AT research. [3]

2. Related Work

Research on automated skin lesion classification has
expanded significantly with the rise of deep learn-
ing, particularly in response to datasets and chal-
lenges released by ISIC. Prior work can be grouped
into three main categories: convolutional neural net-
works (CNNs), transformer-based models and self-
supervised learning, and multimodal or vision-language
approaches.

2.1. CNN-based Approaches

The most foundational line of work uses convolu-
tional neural networks, particularly pretrained archi-



tectures fine-tuned for skin lesion classification. Es-
teva et al. (2017) demonstrated that a CNN based on
Inception v3 could achieve dermatologist-level perfor-
mance on a binary skin cancer classification task, which
set a new benchmark and brought widespread atten-
tion to the potential of deep learning in dermatology
[4]. Subsequent works, including participants in ISIC
2018 and 2019 challenges, experimented with ensemble
models, data augmentation, and transfer learning from
ImageNet to improve classification accuracy [1, 3, 4].
These methods often suffer from overfitting on small
datasets and limited interpretability.

While Inception v3 has historically been a strong
benchmark for skin lesion classification, we chose not to
include it in our experiments due to its computational
complexity and our focus on comparing transformer-
based models. Instead, we selected ResNet-18 as a
more lightweight CNN baseline suitable for fine-tuning
in limited-data settings.

2.2. Transformer and Self-Supervised Vision Mod-
els

Vision transformers (ViTs) have emerged as an al-
ternative to CNNs, often requiring less inductive bias
and benefiting more from large-scale pretraining. Self-
supervised models such as DINO [2] and MAE [5] learn
transferable representations without requiring labeled
data, making them attractive for domains like medical
imaging where annotations are scarce. Recent stud-
ies have shown that ViTs pretrained via DINO can
perform competitively with CNNs on various medical
tasks, especially when combined with fine-tuning [2, 5].
However, transformers generally require more data and
compute to converge effectively.

2.3. Multimodal and Vision-Language Models

CLIP [7] introduced a powerful vision-language pre-
training paradigm by jointly learning image and text
embeddings. While originally designed for open-ended
zero-shot classification, researchers have adapted CLIP
for medical applications by fine-tuning it on down-
stream tasks [11]. CLIP offers strong generalization
and robustness, especially when labeled data is limited.
However, its performance in specialized domains like
dermatology is still under active investigation. Works
like ConVIRT [!1] and BiomedCLIP [10] show promise
in further aligning vision-language models with clinical
data.

2.4. Medical Domain-Specific Challenges

Other studies focus on the challenges unique to skin
lesion classification: high inter-class similarity, visual
noise, and class imbalance. Strategies such as hard ex-

ample mining, focal loss, synthetic data augmentation,
and ensembling have been explored to address these is-
sues [6]. The interpretability of predictions remains an
open problem, with visualization tools like Grad-CAM
[8] and integrated gradients being commonly used to
probe model decisions.

3. Methods

We implemented and trained three types of mod-
els for binary skin lesion classification: a convolu-
tional neural network (ResNet-18), a self-supervised
vision transformer (DINO), and a vision-language
model (CLIP ViT-B/32). All models were initialized
with pretrained weights and then fine-tuned on our
melanoma vs. benign classification task.

3.1. Problem Setup

Let x € R3*224X224 denote a dermoscopic image
and y € 0,1 the binary label, where 1 corresponds
to melanoma and 0 to benign. Each model defines a
function fy(z) : R3*224%224 [0, 1] that outputs the
probability of melanoma. We train using the binary
cross-entropy loss:

Lpcr(y,§) = —ylog(g) — (1 —y)log(1 —§)
where § = fp(z) is the model output.
3.2. ResNet-18 Baseline

Our baseline model is a standard ResNet-18 pre-
trained on ImageNet. We replace the final fully con-
nected layer with a single output neuron followed by
a sigmoid activation. We fine-tune the entire model
on our dataset. This model serves as a strong CNN
benchmark and is known to perform well with limited
data and strong augmentations.

3.3. DINO (Self-Supervised ViT)

DINO [2] is a self-supervised learning framework
that pretrains a vision transformer by maximizing
agreement between views of the same image. We use a
ViT-S/16 backbone pretrained on ImageNet-1K with
the DINO objective. We discard the original DINO
projection heads and add a new linear head for binary
classification. We fine-tune all layers on our dataset.

3.4. CLIP (Vision-Language Pretraining)

CLIP [7] learns a joint image-text embedding space
via contrastive training on 400 million image-caption
pairs. We use the ViT-B/32 image encoder from CLIP
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Figure 1. Receiver Operating Characteristic (ROC) curve
for the fine-tuned DINO model. AUC is used to evaluate
classification confidence under class imbalance.

and attach a trainable MLP head for binary classifica-
tion. The model is fine-tuned end-to-end. Although
CLIP is typically used in a zero-shot setting, we evalu-
ate its performance when adapted to our specific task.
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Figure 2. ROC curve for the fine-tuned CLIP model. CLIP
achieves a higher AUC than DINO, indicating improved
ranking performance.

3.5. Training Details

We use the Adam optimizer for all models with the
following hyperparameters:

e Learning Rate: 1 x 1074
e Batch size: 32
e Epochs: 20

e Data augmentation for ResNet: random horizon-
tal flip, random resized crop, color jitter, normal-
ization to ImageNet mean/std

All images are resized to 224x224 and normalized using
ImageNet statistics. We use stratified splits to main-
tain class balance across train/val/test sets.

4. Dataset and Features

We use the ISIC 2018 Challenge dataset, pro-
vided by the International Skin Imaging Collabora-
tion (ISIC), which contains 10,015 dermoscopic images
of skin lesions. Each image is labeled with one of
seven disease categories: melanoma, melanocytic ne-
vus, basal cell carcinoma, actinic keratosis, benign ker-
atosis, dermatofibroma, and vascular lesion. For the
purpose of this project, we simplify the classification
task into a binary problem: melanoma (positive class)
versus all other classes (negative class). This framing
aligns with the clinical goal of prioritizing early detec-
tion of melanoma, which is the most life-threatening of
the seven conditions. [9]

After filtering the dataset, we obtained the following
class counts:

e Melanoma: 1,113 images
e Benign: 8,902 images
e Total: 10,015 images

We split the dataset into training (70%), validation
(15%), and test (15%) sets using stratified sampling to
preserve class proportions:

e Training set: 7,010 images
e Validation set: 1,502 images
e Test set: 1,503 images

4.1. Preprocessing and Augmentation

Each image is resized to 224x224 pixels to match
the input size expected by the pretrained backbones.
During ResNet training, we apply the following data
augmentation techniques to improve generalization:

e Random horizontal flip
e Random resized crop
e Color jitter (brightness, contrast, saturation)

e Normalization using ImageNet mean and standard
deviation:

1 = [0.485,0.456, 0.406], o = [0.229, 0.224, 0.225]
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Figure 3. Class distribution of the ISIC 2018 dataset used in
this project. The dataset is significantly imbalanced, with
malignant lesions making up a small fraction of total sam-
ples ( 11%), necessitating class-aware training techniques.

For CLIP, we used OpenAl’s official preprocess-
ing pipeline, consisting of resizing, center cropping to
224 %224, and normalization using CLIP-specific statis-
tics. No random augmentations were applied.

For DINO, we matched the original ImageNet pre-
training setup using bicubic resizing to 224x224 and
ImageNet normalization. Like CLIP, we did not add
extra augmentations such as flips or jitter, in order to
isolate the effect of representation learning rather than
data augmentation.

4.2. Handling Class Imbalance

The dataset exhibits a strong class imbalance, with
only 11% of samples labeled as melanoma. To address
this, we apply a weighted binary cross-entropy loss,
assigning a higher weight to the positive class during
training. Specifically, we used class weights of [1.0,
8.0] for benign and melanoma samples, respectively.
This weighting scheme increases the penalty for mis-
classifying melanoma cases, helping the model focus
more on the minority class and improving recall. The
weights were chosen approximately in inverse propor-
tion to class frequency, with melanoma assigned a 8x
higher weight than benign. This encourages the models
to pay more attention to the minority class and helps
mitigate bias toward the dominant negative class.

We also monitored precision, recall, and ROC-AUC,
metrics more robust to imbalance, throughout training
and evaluation.

4.3. Model Specified Preprocessing Notes

e DINO was originally trained on ImageNet images
using similar 224x224 inputs and ImageNet nor-
malization. We retained its input pipeline and
added a classification head on top of the pretrained
transformer encoder.

e CLIP (ViT-B/32) expects pixel values scaled to
[0,1] and uses its own specific normalization con-
stants. We matched its expected input distribu-
tion and resized inputs using bicubic interpolation,
as recommended in the original implementation.

4.4. Example Images

In Figure 4 we show example images from the
dataset, including both melanoma and benign cases.
These illustrate the high wvariability in lesion size,
shape, and color that makes this classification task
challenging.
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Figure 4. Example images from the ISIC 2018 dataset, in-
cluding both melanoma (malignant) and benign skin le-
sions. Visual variability in size, color, and texture makes
classification difficult.

5. Experiments, Results, and Discussion
5.1. Metrics and Evaluation

We evaluate our models using accuracy, ROC-AUC,
precision, and recall, with ROC-AUC as the primary
metric due to its robustness to class imbalance. Given
binary ground truth y € 0,1 and predicated probability
7 € 10, 1], accuracy is:

Accuracy =

1 N
~ D 1[G > 0.5 =y
=1



The ROC-AUC is computed from the true positive and
false positive rates across all thresholds.

5.2. Quantitative Results

‘ Model ‘ Accuracy ‘ Precision | Recall ‘ ROC-AUC ‘
ResNet18 0.942 0.788 0.647 0.711
DINO 0.760 0.290 0.796 0.865
CLIP 0.791 0.320 0.782 0.877

Table 1. Performance metrics on the validation set. DINO
achieves the highest recall and average precision; CLIP
achieves the highest ROC-AUC.

These results show that both DINO and CLIP out-
perform the CNN baseline, with CLIP achieving the
best overall performance. The improvement in ROC-
AUC suggests better ranking of predictions and more
confident positive detections.

5.3. Training Curves

Training curves (Figure 5) show that DINO and
CLIP maintain stable generalization. The pretrained
transformer backbones appear to regularize well in this
low-data regime.
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Figure 5. Training loss curves for DINO and CLIP. Both
models converge steadily, with no severe overfitting.

5.4. Precision-Recall Curves

We further evaluate model performance using
precision-recall (PR) curves, which are particularly in-
formative under class imbalance. As shown in Figure
7, both DINO and CLIP demonstrate strong perfor-
mance, but DINO outperforms CLIP in both recall and
average precision. DINO achieves an average precision
(AP) of 0.441 compared to 0.415 for CLIP, reinforc-
ing its strength in identifying melanoma cases. These
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Figure 6. Validation accuracy curves for DINO and CLIP.
Both models maintain stable generalization across training,
with CLIP achieving the highest accuracy.

results suggest that DINO is better suited for high-
sensitivity screening, where minimizing false negatives
is critical.
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Figure 7. Precision-Recall curves for fine-tuned DINO and
CLIP models on the validation set. DINO achieves higher
average precision (AP = 0.441) and recall, indicating
stronger sensitivity to melanoma cases under class imbal-
ance.

5.5. Qualitative Results

To interpret the model’s predictions, we applied
Grad-CAM to visualize salient image regions influenc-
ing classification [8]. The visualizations in Figures 8
and 9 show that ResNetl8 frequently focuses on the
lesion area or its immediate surroundings when pre-
dicting melanoma. This alignment suggests that the
model is leveraging medically relevant features rather



than background artifacts. However, in some cases,
Grad-CAM activations were diffuse or highlighted ar-
eas outside the lesion, indicating the model may still
rely on non-discriminative features. These findings un-
derscore the importance of incorporating visual expla-
nations when deploying models in clinical contexts and
motivate future improvements in both model robust-
ness and interpretability.

Figure 8. Grad-CAM visualization for a melanoma image
using the ResNet-18 model. The model focuses on the lesion
region, indicating attention to clinically relevant features.

B

Figure 9. Grad-CAM visualization for a benign image us-
ing ResNet-18. Some activation is diffused or off-target,
highlighting the limitations of interpretability tools.

5.6. Error Analysis

Common errors across all models include:

e Small or low-contrast lesions

e Background artifacts or vignetting

e Lesions occluded by hair or lighting artifacts

While both DINO and CLIP outperform the ResNet
baseline in terms of generalization, they exhibit dif-

ferent strengths. DINO achieves the highest recall
and average precision, meaning it correctly identifies
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Figure 10. Confusion matrix for DINO on the validation
set. The model reduces false positives compared to ResNet,
while maintaining reasonable melanoma recall.
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Figure 11. Confusion matrix for CLIP on the validation set.
While CLIP maintains strong precision, it shows slightly
lower recall compared to DINO, missing more melanoma
cases.

more melanoma cases and maintains stronger perfor-
mance under class imbalance. This is especially valu-
able in clinical settings, where minimizing false nega-
tives is critical for early detection. CLIP, by contrast,
still maintains strong ROC-AUC and precision, but its
lower recall indicates a tendency to miss more positive
cases. These results underscore the importance of se-
lecting models based on the clinical context: DINO is
better suited for high-sensitivity screening, while CLIP
may be preferable in scenarios where reducing false pos-
itives is a priority.



5.7. Discussion

Our experiments suggest that pretrained trans-
former models (DINO, CLIP) generalize better than
traditional CNNs in data-scarce medical imaging set-
tings. DINO, in particular, demonstrates the strongest
performance across recall and average precision, high-
lighting its ability to detect more melanoma cases in
the imbalanced setting. CLIP also performs well, es-
pecially in terms of ROC-AUC and precision, likely due
to its multimodal pretraining, which may enhance se-
mantic understanding.

We observed that:

e Fine-tuning was more effective than linear probing

e Self-supervised pretraining (DINO) offered mean-
ingful gains without labeled medical data

e Vision-language pretraining (CLIP) yielded strong
results, but slightly underperformed DINO in re-
call and average precision

Despite these findings, overfitting to the dominant be-
nign class remains a challenge. In future work, we
plan to explore semi-supervised methods, synthetic
data generation, and larger backbones (e.g., CLIP ViT-
L/14) to further boost performance. Additionally,
model selection should consider the application con-
text—favoring DINO when sensitivity is paramount,
and CLIP when specificity or overall ranking is more
important.

Additionally, we are currently exploring an ensem-
ble approach that combines the outputs of DINO and
CLIP. Given their complementary strengths—DINO’s
sensitivity and CLIP’s confidence calibration—we be-
lieve an ensemble may yield improved performance
across multiple metrics. We are excited to evaluate its
impact on melanoma detection in future experiments.

6. Conclusion and Future Work

In this project, we explored the application of mod-
ern deep learning models to the task of melanoma
detection from dermoscopic images. We evaluated
three approaches: a CNN baseline (ResNet-18), a self-
supervised vision transformer (DINO), and a vision-
language model (CLIP ViT-B/32). All models were
fine-tuned on the ISIC 2018 dataset for binary classifi-
cation of skin lesions.

Our results demonstrate that transformer-based
models outperform the CNN baseline, with DINO
achieving the highest recall and average precision, and
CLIP achieving the best ROC-AUC and precision.
This highlights the impact of pretraining on generaliza-
tion—especially in data-scarce medical domains. We

also found that fine-tuning was essential for good per-
formance, as purely frozen feature extractors underper-
formed in our setting.

Despite these promising results, challenges re-
main. All models struggled with subtle or ambiguous
melanoma cases, and overfitting to the dominant be-
nign class persisted despite loss weighting and augmen-
tation. Our Grad-CAM visualizations demonstrated
that ResNet18 often attends to relevant lesion regions,
though some inconsistencies highlight the continued
need for explainability tools in clinical AI. Additionally,
interpretability remains a concern, as even Grad-CAM
explanations can be noisy or misleading.

In future work, we plan to:

e Explore semi-supervised learning techniques such
as pseudo-labeling and consistency training

e Incorporate larger models (e.g., CLIP ViT-L/14)
and compare different transformer backbones

e Investigate the use of textual metadata (e.g., pa-
tient age, lesion location) in a multimodal pipeline

e Experiment with synthetic data augmentation
(e.g., diffusion-based lesion generation) to balance
class distributions and improve generalization

Overall, our study supports the growing evidence that
pretrained vision transformers, and especially multi-
modal models like DINO and CLIP hold significant
promise for real-world medical imaging applications,
with DINO offering greater sensitivity and CLIP pro-
viding strong overall ranking performance.

We are also actively investigating an ensemble of
DINO and CLIP, aiming to leverage the strengths of
both models. This combined approach may offer a
more balanced trade-off between recall and precision,
and we are eager to report its performance in future
iterations of this work.
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